流動人口イメージ

8月25日、日経平均株価はコロナ禍以前の23000円台に一時的に回復しました。コロナ禍が日に日に深刻さを増した4月上旬、国際通貨基金(IMF)のゲオルギエワ専務理事が「(新型コロナウイルスによる影響で)世界経済は大恐慌以来の景気悪化になると予測している」と危機感を示していたのとは対照的な株価の変動です。

デジタル化によって様々な情報を入手できる世界になっても、複雑さや不確実性に対する不安が無くなることはありません。本記事では、複雑で不確実な時代のリーシングにおけるデータ活用に焦点をあててみます。

正確な長期予測が困難な中での立地戦略

弊社がお取り引きさせていただいているリーシングの担当者から次のようなお悩みをよく伺います。

それは、「経営幹部(だいたい60歳代くらいの方が多い)から"長期の人口やビジネス環境の変化を予測しながらリーシング戦略を策定せよ"と言われるが、これほど変化の激しい時代にどのように策定すればいいのかわからないし、どれほど意味があるのかもわからない」といった内容です。

人口に関して言えば、2015年の国勢調査から人口減少がはっきりとしたトレンドで記録されるようになりました。2040年の人口を日本全国の21万箇所の大字町丁目単位で予測しても、ほとんどのエリアで人口が減少する予測となっています。人口増加の傾向がみられるのは、東京23区の一部と地方都市でもタワーマンションなどの再開発の盛んな一部の地域に限られています。

また、人口の減少のみならず、長期にわたるデフレ環境や消費税の増税によって、日本全体の総支出額は下方への圧力が益々強くなってきています

その一方で、人口減少でも店舗網を広げ、コロナ禍でも売上を伸ばしている業種・業態は存在しており、総需要が減る中でもあたらしい需要の形に柔軟に対応した企業は成長しています

例えば、新型コロナの影響で外食需要は減りましたが、消費支出における食費は横ばいです。人間の胃袋の数はほとんど変わりませんから、外食が減った分「おうちごはん」などに象徴される家庭での食費が増えました。特に「おうちごはん」を支えたデリバリー需要に応えることのできたファーストフードやファミリーレストラン、個人の飲食店は業績を伸ばしています。

流動人口データで立地を比較する

このような需要の質的変化といった今日的な課題に対応するのに活用できるのが、流動人口データです。流動人口データはモバイル端末から取得した位置情報を元に時間帯別にエリア内の人口を推計したものです。

以下のマップは、125mメッシュ単位で東京都心部の昼間人口(データ提供:楽しいチリビジ「あさひる統計®️」)をあらわしたマップです。125mメッシュは従来の統計でよく使われる500mメッシュの16倍の解像度であり、商業施設や商業集積地といった大きさの単位で隣接するメッシュとの違いを表現できる商圏分析には非常に適したメッシュです

こちらがコロナ禍前(2019年10月-12月期)のマップで、

コロナ禍前の昼間人口

こちらがコロナ禍中(2020年4月-6月期)のマップです。

コロナ禍中の昼間人口

赤色の濃さが昼間人口の多さを表していますが、外出自粛と在宅勤務の奨励により移動が制限された結果、コロナ禍中はコロナ禍前に比べてターミナル駅周辺(新宿・渋谷・目黒・品川・新橋・東京駅エリアなど)の赤い色が薄くなっていることがわかります。これらの立地はオフィスビルと商業施設が集積しており、本来昼と夜との人口差が大きい場所です。

なお、今年5月にジオマーケティングで実施した自主調査アンケートの結果では、4月中に在宅勤務を実施した人の割合は日本全国で11%でした。

[詳細はこちら]ジオデモグラフィックスで簡易版ダイレクトマーケティングを実現する手法

その中でも特に在宅勤務割合が高かった居住者エリアを示したのが以下のマップです。

在宅勤務の多いエリア
赤く塗られた在宅勤務割合が高いエリアは鉄道沿線に放射状に広がっており、普段は都心に通勤する居住者の多い地域です。ターミナル駅に流入する人口の源流域となっているところが外出自粛でせき止められた様子が想像できます。

流動人口の類似性に注目すると立地のポテンシャルがわかる

次の2枚のマップは昼と夜との人口差に注目して125mメッシュを4種類の地域に分類し、先ほど同様にコロナ禍前とコロナ禍中で比較したものです(データ提供:楽しいチリビジ「あさひる統計®️」)。

こちらがコロナ禍前(2019年10月-12月期)のデータで、

コロナ禍前の昼間夜間人口比較

こちらがコロナ禍中(2020年4月-6月期)のデータです。

コロナ禍中の昼間夜間人口比較

色の塗り分けは以下のようになっています。

  • 『黄』:昼間に人口が増える「ビジネス街」
  • 『赤』:休日に人が多く集まる「お買い物とレジャー」
  • 『紫』:夕方以降に人口が増える「歓楽街」
  • 『緑』:昼間より夜間の方が人口が多い「住宅街」

コロナ禍前の地図では明治神宮とその沿道の原宿(表参道)、オリンピック会場となる国立競技場がある神宮外苑などに『赤(お買い物とレジャー)』のメッシュが目立っていましたが、コロナ禍中のマップではほとんど消滅しています。また、渋谷や恵比寿、六本木の『紫(歓楽街)』に注目してみても、コロナ禍中では分布が小さくなっています。

一方で、地図の西側の『緑(住宅街)』が広がる代々木上原周辺でば、夜間人口と昼間人口が逆転して『黄(ビジネス街)』が出現したり、夕方以降に人の流れが増える『紫(歓楽街)』、休日の流入が多くなった『赤(お買い物とレジャー)』が出現したりして街の使われ方が変化しているのが観察できます

例えば、日中の流動人口が増えたエリアではあたらしいデリバリーのニーズが発生していると考えることができます。このようなデータをリーシングや店舗開発に活かすことができれば、利用者の新しいニーズに応えるアイディアが生まれるのではないでしょうか?

リーシングのDXを実現するgleasin

ジオマーケティングが提供しているgleasin(グリーシン)は、リーシングのDXを実現するプラットフォームです。

これまでGISの利用やマーケットリサーチだけでは困難だった"立地最適なテナントを検索するための機能"や"テナントブランドの世界観をSNSから可視化する機能"など、リーシングプランの検討に使える機能がコンパクトにまとまったWebサービスです。

gleasinは、施設にあったテナントを「探せる」「見つかる」「誘致できる」機能とサービスを提供しています。

実証実験のお知らせ

gleasinを使って、リーシング課題を解決しませんか?実証実験は、ジオマーケティングのコンサルタントとともに新しいデータの活用と高度なデータ分析を通じて、従来にないテナントリーシングプランを検討する『共創型リーシング』のプログラムです。

SNSから抽出したテナントブランドの世界観の分析のほか、本記事で紹介した「あさひる統計®️」(データ提供:楽しいチリビジ)の流動人口データについても活用します

オンライン説明会を随時開催しておりますので、まずはお気軽にご参加ください。

実証実験バナー

List